Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766830

RESUMO

The short and long isoforms of FAIM (FAIM-S and FAIM-L) hold important functions in the central nervous system, and their expression levels are specifically enriched in the retina. We previously described that Faim knockout (KO) mice present structural and molecular alterations in the retina compatible with a neurodegenerative phenotype. Here, we aimed to study Faim KO retinal functions and molecular mechanisms leading to its alterations. Electroretinographic recordings showed that aged Faim KO mice present functional loss of rod photoreceptor and ganglion cells. Additionally, we found a significant delay in dark adaptation from early adult ages. This functional deficit is exacerbated by luminic stress, which also caused histopathological alterations. Interestingly, Faim KO mice present abnormal Arrestin-1 redistribution upon light reception, and we show that Arrestin-1 is ubiquitinated, a process that is abrogated by either FAIM-S or FAIM-L in vitro. Our results suggest that FAIM assists Arrestin-1 light-dependent translocation by a process that likely involves ubiquitination. In the absence of FAIM, this impairment could be the cause of dark adaptation delay and increased light sensitivity. Multiple retinal diseases are linked to deficits in photoresponse termination, and hence, investigating the role of FAIM could shed light onto the underlying mechanisms of their pathophysiology.


Assuntos
Arrestina , Retina , Animais , Camundongos , Arrestina/metabolismo , Adaptação à Escuridão , Camundongos Knockout , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Translocação Genética , Visão Ocular
2.
J Neurosci Res ; 99(12): 3103-3120, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713467

RESUMO

Fas Apoptotic Inhibitory Molecule protein (FAIM) is a death receptor antagonist and an apoptosis regulator. It encodes two isoforms, namely FAIM-S (short) and FAIM-L (long), both with significant neuronal functions. FAIM-S, which is ubiquitously expressed, is involved in neurite outgrowth. In contrast, FAIM-L is expressed only in neurons and it protects them from cell death. Interestingly, FAIM-L is downregulated in patients and mouse models of Alzheimer's disease before the onset of neurodegeneration, and Faim transcript levels are decreased in mouse models of retinal degeneration. However, few studies have addressed the role of FAIM in the central nervous system, yet alone the retina. The retina is a highly specialized tissue, and its degeneration has proved to precede pathological mechanisms of neurodegenerative diseases. Here we describe that Faim depletion in mice damages the retina persistently and leads to late-onset photoreceptor death in older mice. Immunohistochemical analyses showed that Faim knockout (Faim-/- ) mice present ubiquitinated aggregates throughout the retina from early ages. Moreover, retinal cells released stress signals that can signal to Müller cells, as shown by immunofluorescence and qRT-PCR. Müller cells monitor retinal homeostasis and trigger a gliotic response in Faim-/- mice that becomes pathogenic when sustained. In this regard, we observed pronounced vascular leakage at later ages, which may be caused by persistent inflammation. These results suggest that FAIM is an important player in the maintenance of retinal homeostasis, and they support the premise that FAIM is a plausible early marker for late photoreceptor and neuronal degeneration.


Assuntos
Proteínas Reguladoras de Apoptose , Gliose , Neurônios , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Morte Celular , Gliose/patologia , Camundongos , Neurônios/metabolismo , Retina
3.
Cell Death Dis ; 11(2): 82, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015347

RESUMO

The long isoform of Fas apoptosis inhibitory molecule (FAIM-L) is a neuron-specific death receptor antagonist that modulates apoptotic cell death and mechanisms of neuronal plasticity. FAIM-L exerts its antiapoptotic action by binding to X-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases, which are the main effectors of apoptosis. XIAP levels are regulated by the ubiquitin-proteasome pathway. FAIM-L interaction with XIAP prevents the ubiquitination and degradation of the latter, thereby allowing it to inhibit caspase activation. This interaction also modulates non-apoptotic functions of caspases, such as the endocytosis of AMPA receptor (AMPAR) in hippocampal long-term depression (LTD). The molecular mechanism of action exerted by FAIM-L is unclear since the consensus binding motifs are still unknown. Here, we performed a two-hybrid screening to discover novel FAIM-L-interacting proteins. We found a functional interaction of SIVA-1 with FAIM-L. SIVA-1 is a proapoptotic protein that has the capacity to interact with XIAP. We describe how SIVA-1 regulates FAIM-L function by disrupting the interaction of FAIM-L with XIAP, thereby promoting XIAP ubiquitination, caspase-3 activation and neuronal death. Furthermore, we report that SIVA-1 plays a role in receptor internalization in synapses. SIVA-1 is upregulated upon chemical LTD induction, and it modulates AMPAR internalization via non-apoptotic activation of caspases. In summary, our findings uncover SIVA-1 as new functional partner of FAIM-L and demonstrate its role as a regulator of caspase activity in synaptic function.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Plasticidade Neuronal , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 3/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Ratos , Receptores de AMPA/metabolismo , Ubiquitinação
4.
Front Cell Dev Biol ; 8: 584606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425889

RESUMO

Apoptosis plays an important role during development, control of tissue homeostasis and in pathological contexts. Apoptosis is executed mainly through the intrinsic pathway or the death receptor pathway, i.e., extrinsic pathway. These processes are tightly controlled by positive and negative regulators that dictate pro- or anti-apoptotic death receptor signaling. One of these regulators is the Fas Apoptotic Inhibitory Molecule (FAIM). This death receptor antagonist has two main isoforms, FAIM-S (short) which is the ubiquitously expressed, and a longer isoform, FAIM-L (long), which is mainly expressed in the nervous system. Despite its role as a death receptor antagonist, FAIM also participates in cell death-independent processes such as nerve growth factor-induced neuritogenesis or synaptic transmission. Moreover, FAIM isoforms have been implicated in blocking the formation of protein aggregates under stress conditions or de-regulated in certain pathologies such as Alzheimer's and Parkinson's diseases. Despite the role of FAIM in physiological and pathological processes, little is known about the molecular mechanisms involved in the regulation of its expression. Here, we seek to investigate the post-transcriptional regulation of FAIM isoforms by microRNAs (miRNAs). We found that miR-206, miR-1-3p, and miR-133b are direct regulators of FAIM expression. These findings provide new insights into the regulation of FAIM and may provide new opportunities for therapeutic intervention in diseases in which the expression of FAIM is altered.

5.
PLoS One ; 12(10): e0185327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981531

RESUMO

Fas Apoptosis Inhibitory Molecule (FAIM) is an evolutionarily highly conserved death receptor antagonist, widely expressed and known to participate in physiological and pathological processes. Two FAIM transcript variants have been characterized to date, namely FAIM short (FAIM-S) and FAIM long (FAIM-L). FAIM-S is ubiquitously expressed and serves as an anti-apoptotic protein in the immune system. Furthermore, in neurons, this isoform promotes NGF-induced neurite outgrowth through NF-кB and ERK signaling. In contrast FAIM-L is found only in neurons, where it exerts anti-apoptotic activity against several stimuli. In addition to these two variants, in silico studies point to the existence of two additional isoforms, neither of which have been characterized to date. In this regard, here we confirm the presence of these two additional FAIM isoforms in human fetal brain, fetal and adult testes, and placenta tissues. We named them FAIM-S_2a and FAIM-L_2a since they have the same sequence as FAIM-S and FAIM-L, but include exon 2a. PCR and western blot revealed that FAIM-S_2a shows ubiquitous expression in all the tissues and cellular models tested, while FAIM-L_2a is expressed exclusively in tissues of the nervous system. In addition, we found that, when overexpressed in non-neuronal cells, the splicing factor nSR100 induces the expression of the neuronal isoforms, thus identifying it as responsible for the generation of FAIM-L and FAIM-L_2a. Functionally, FAIM-S_2a and FAIM-L_2a increased neurite outgrowth in response to NGF stimulation in a neuronal model. This observation thus, supports the notion that these two isoforms are involved in neuronal differentiation. Furthermore, subcellular fractionation experiments revealed that, in contrast to FAIM-S and FAIM-L, FAIM-S_2a and FAIM-L_2a are able to localize to the nucleus, where they may have additional functions. In summary, here we report on two novel FAIM isoforms that may have relevant roles in the physiology and pathology of the nervous system.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Éxons , Humanos , Conformação de Ácido Nucleico , Células PC12 , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estabilidade Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Termodinâmica
6.
J Neurochem ; 139(1): 11-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27385439

RESUMO

The importance of death receptor (DR) signaling in embryonic development and physiological homeostasis is well established, as is the existence of several molecules that modulate DRs function, among them Fas Apoptotis Inhibitory Molecules. Although FAIM1, FAIM2, and FAIM3 inhibit Fas-induced cell death, they are not structurally related, nor do they share expression patterns. Moreover, they inhibit apoptosis through completely different mechanisms. FAIM1 and FAIM2 protect neurons from DR-induced apoptosis and are involved in neurite outgrowth and neuronal plasticity. FAIM1 inhibits Fas ligand- and tumor necrosis factor alpha-induced apoptosis by direct interaction with Fas receptor and through the stabilization of levels of X-linked inhibitor of apoptosis protein, a potent anti-apoptotic protein that inhibits caspases. Low FAIM1 levels are found in Alzheimer's disease, thus sensitizing neurons to tumor necrosis factor alpha and prompting neuronal loss. FAIM2 protects from Fas by direct interaction with Fas receptor, as well as by modulating calcium release at the endoplasmic reticulum through interaction with Bcl-xL. Several studies prove the role of FAIM2 in diseases of the nervous system, such as ischemia, bacterial meningitis, and neuroblastoma. The less characterized member of the FAIM family is FAIM3, which is expressed in tissues of the digestive and urinary tracts, bone marrow and testes, and restricted to the cerebellum in the nervous system. FAIM3 protects against DR-induced apoptosis by inducing the expression of other DR-antagonists such as CFLAR or through the interaction with the DR-adaptor protein Fas-associated via death domain. FAIM3 null mouse models reveal this protein as an important mediator of inflammatory autoimmune responses such as those triggered in autoimmune encephalomyelitis. Given the differences between FAIMs and the variety of processes in which they are involved, here we sought to provide a concise review about these molecules and their roles in the physiology and pathology of the nervous system. Even though they share name and inhibit Fas-induced cell death, Fas apoptotic inhibitory molecules (FAIMs) are not structurally related and inhibit apoptosis through completely different mechanisms. In this review, we describe FAIM1, FAIM2, and FAIM3 functions in the nervous system, and their implication in diverse pathologies such as neurodegenerative disease, cancer, or autoimmune diseases.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Morte Celular/genética , Sistema Nervoso , Receptor fas/antagonistas & inibidores , Receptor fas/genética , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Humanos , Camundongos
7.
Mol Cancer ; 14: 62, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25890358

RESUMO

BACKGROUND: Patients with high-risk neuroblastoma (NBL) tumors have a high mortality rate. Consequently, there is an urgent need for the development of new treatments for this condition. Targeting death receptor signaling has been proposed as an alternative to standard chemo- and radio-therapies in various tumors. In NBL, this therapeutic strategy has been largely disregarded, possibly because ~50-70% of all human NBLs are characterized by caspase-8 silencing. However, the expression of caspase-8 is detected in a significant group of NBL patients, and they could therefore benefit from treatments that induce cell death through death receptor activation. Given that cytokines, such as TNFα, are able to upregulate Fas expression, we sought to address the therapeutic relevance of co-treatment with TNFα and FasL in NBL. METHODS: For the purpose of the study we used a set of eight NBL cell lines. Here we explore the cell death induced by TNFα, FasL, cisplatin, and etoposide, or a combination thereof by Hoechst staining and calcein viability assay. Further assessment of the signaling pathways involved was performed by caspase activity assays and Western blot experiments. Characterization of Fas expression levels was achieved by qRT-PCR, cell surface biotinylation assays, and cytometry. RESULTS: We have found that TNFα is able to increase FasL-induced cell death by a mechanism that involves the NF-κB-mediated induction of the Fas receptor. Moreover, TNFα sensitized NBL cells to DNA-damaging agents (i.e. cisplatin and etoposide) that induce the expression of FasL. Priming to FasL-, cisplatin-, and etoposide-induced cell death could only be achieved in NBLs that display TNFα-induced upregulation of Fas. Further analysis denotes that the high degree of heterogeneity between NBLs is also manifested in Fas expression and modulation thereof by TNFα. CONCLUSIONS: In summary, our findings reveal that TNFα sensitizes NBL cells to FasL-induced cell death by NF-κB-mediated upregulation of Fas and unveil a new mechanism through which TNFα enhances the efficacy of currently used NBL treatments, cisplatin and etoposide.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Ligante Fas/farmacologia , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Receptor fas/genética , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Ativação Enzimática/efeitos dos fármacos , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Transcrição Gênica
8.
J Neurosci ; 33(49): 19262-75, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24305822

RESUMO

The neuronal long isoform of Fas Apoptotic Inhibitory Molecule (FAIM-L) protects from death receptor (DR)-induced apoptosis, yet its mechanism of protection remains unknown. Here, we show that FAIM-L protects rat neuronal Type II cells from Fas-induced apoptosis. XIAP has previously emerged as a molecular discriminator that is upregulated in Type II and downregulated in Type I apoptotic signaling. We demonstrate that FAIM-L requires sustained endogenous levels of XIAP to protect Type II cells as well as murine cortical neurons from Fas-induced apoptosis. FAIM-L interacts with the BIR2 domain of XIAP through an IAP-binding motif, the mutation of which impairs the antiapoptotic function of FAIM-L. Finally, we report that FAIM-L inhibits XIAP auto-ubiquitinylation and maintains its stability, thus conferring protection from apoptosis. Our results bring new understanding of the regulation of endogenous XIAP by a DR antagonist, pointing out at FAIM-L as a promising therapeutic tool for protection from apoptosis in pathological situations where XIAP levels are decreased.


Assuntos
Proteínas Reguladoras de Apoptose/farmacologia , Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Fármacos Neuroprotetores , Ubiquitinação/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/fisiologia , Receptor fas/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Citocromos c/metabolismo , Feminino , Imunoprecipitação , Proteínas Inibidoras de Apoptose/genética , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutagênese Sítio-Dirigida , Células PC12 , Plasmídeos/genética , Ligação Proteica , Conformação Proteica , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteína X Associada a bcl-2/metabolismo , Receptor fas/genética
9.
Endocr Rev ; 27(3): 318-29, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16556851

RESUMO

Metabolic disturbances associated with alterations in lipid metabolism, such as obesity, type 2 diabetes, and syndrome X, are becoming more and more prominent in Western societies. Despite extensive research in such pathologies and their molecular basis, we are still far from completely understanding how these metabolic perturbations are produced and interrelate and, consequently, how to treat them efficiently. The discovery that adipose tissue is, in fact, an endocrine tissue able to secrete active molecules related to lipid homeostasis--the adipokines--has dramatically changed our understanding of the molecular events that take place in such diseases. This knowledge has been further improved by the discovery of peroxisome proliferator-activated receptors and their ligands, at present commonly used for the clinical treatment of lipid disturbances. However, a key point remains to be solved, and that is the role of muscle lipid metabolism, notably because of the main role played by this tissue in the development of such pathologies. In addition, a reciprocal regulation between adipose tissue and skeletal muscle has been proposed. New discoveries on the role of peroxisome proliferator-activated receptor-delta in skeletal muscle functions as well as the secretory capabilities of muscle, now considered as an endocrine tissue, have changed the general point of view on lipid homeostasis, opening new and promising doors for the treatment of lipid disorders.


Assuntos
Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Tecido Adiposo/metabolismo , Animais , Exercício Físico , Ácidos Graxos/metabolismo , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/agonistas
10.
Biochim Biophys Acta ; 1740(2): 313-7, 2005 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-15949697

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors exerting several functions in development and metabolism. PPARalpha, activated by polyunsaturated fatty acids and fibrates, is implicated in regulation of lipid metabolism, lipoprotein synthesis and metabolism and inflammatory response in liver and other tissues. PPARgamma plays important roles in regulation of proliferation and differentiation of several cell types, including adipose cells. Its activation by thiazolidinediones results in insulin sensibilization and antidiabetic action. Until recently, the physiological functions of PPARdelta remain elusive. The utilization of specific agonists and of appropriate cellular and animal models revealed that PPARdelta has an important role in metabolic adaptation of several tissues to environmental changes. Treatment of obese animals by specific PPARdelta agonists results in normalization of metabolic parameters and reduction of adiposity. The nuclear receptor appeared to be implicated in the regulation of fatty acid burning capacities of skeletal muscle and adipose tissue by controlling the expression of genes involved in fatty acid uptake, beta-oxidation and energy uncoupling. PPARdelta is also implicated in the adaptive metabolic response of skeletal muscle to endurance exercise by controlling the number of oxidative myofibers. Given the results obtained with animal models, PPARdelta agonists may have therapeutic usefulness in metabolic syndrome by increasing fatty acid consumption in skeletal muscle and adipose tissue.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos , PPAR delta/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos/metabolismo , Humanos , Síndrome Metabólica/tratamento farmacológico , Proteína Mitocondrial Trifuncional , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/agonistas
11.
Int J Mol Med ; 15(6): 963-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15870900

RESUMO

Administration of a single acute intravenous injection of interleukin-15 (IL-15) (100 microg/kg bw) to rats resulted in a significant decrease (22%) in triacylglycerol absorption, as measured by using [14C]-triolein load. The cytokine, however, did not influence the oxidation of the exogenously administered lipid or the tissue uptake of [14C]-triolein; this is in concordance with the lack of effects found in the measurement of the tissue lipoprotein lipase activity. Concerning the mechanism involved in the decreased intestinal absorption associated with IL-15 administration, the results presented clearly demonstrate that changes in gastric emptying and intestinal mobility are not involved, as the effect is specific for triacylglycerols. In conclusion, intestinal absorption may be an additional mechanism to take into consideration to explain the 'anti-fat' effect of this cytokine.


Assuntos
Interleucina-15/administração & dosagem , Interleucina-15/farmacologia , Absorção Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Animais , Radioisótopos de Carbono , Dieta , Interleucina-15/metabolismo , Lipase Lipoproteica/metabolismo , Masculino , Ratos , Ratos Wistar , Triglicerídeos/metabolismo , Trioleína/metabolismo
12.
Med Res Rev ; 25(1): 49-65, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15389734

RESUMO

Since the discovery of leptin, the adipocyte and its products have been the subject of intensive research. Thus, it has been demonstrated that adipose tissue plays a central role in energy homeostasis, behaving as an endocrine organ that expresses molecules involved in regulation of metabolism; alterations in the expression or activity of those molecules have a fundamental role in pathologies such as obesity and insulin resistance. However, little is known about the role played by another tissue, skeletal muscle, which may have similar functions regarding metabolism control. Indeed, some molecules expressed in this tissue have recently been shown to modulate adipose metabolism. The present review considers the metabolic interrelationships and cross-talk of signals derived from both skeletal muscle and adipose tissue. It is suggested that cytokines derived from both tissues may have an important role in maintaining an adequate ratio of skeletal muscle to fat and thus may play an important role in the control of body weight. IL-15 (a cytokine highly-expressed in skeletal muscle), TNF-alpha, and leptin could play a decisive role in the suggested "conversation" between adipose tissue and skeletal muscle.


Assuntos
Tecido Adiposo/fisiologia , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Tecido Adiposo/citologia , Animais , Ciclo Celular , Humanos
13.
Biochimie ; 86(11): 833-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15589693

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors playing important regulatory functions in development and metabolism. PPARalpha and PPARgamma are the most extensively examined and characterized, mainly because they are activated by marketed hypolipidemic and insulin sensitizer compounds, such as fibrates and thiazolidinediones. It has been established that the third member of the family, PPARdelta is implicated in developmental regulations, but until recently, its role in metabolism remained unclear. The availability of specific PPARdelta agonists and of appropriate cellular and animal models revealed that PPARdelta plays a crucial role in fatty acid metabolism in several tissues. Treatment of obese animals with PPARdelta agonists results in normalization of metabolic parameters and reduction of adiposity. Activation of the nuclear receptor promotes fatty acid burning in skeletal muscle and adipose tissue by upregulation of fatty acid uptake, beta-oxidation and energy uncoupling. PPARdelta is also involved in the adaptive metabolic responses of skeletal muscle to environmental changes, such as long-term fasting or physical exercise, by controlling the number of oxidative myofibers. These observations strongly suggest that PPARdelta agonists may have therapeutic usefulness in metabolic syndrome by increasing fatty acid consumption and decreasing obesity.


Assuntos
Ácidos Graxos/metabolismo , Síndrome Metabólica/metabolismo , PPAR delta/fisiologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Resistência à Insulina/fisiologia , Ligantes , Macaca mulatta , Síndrome Metabólica/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Obesidade/metabolismo , PPAR delta/agonistas , PPAR delta/genética , Tiazóis/uso terapêutico
14.
Int J Mol Med ; 14(4): 719-23, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15375607

RESUMO

Overexpression of the proto-oncogene c-ski in mice results in the development of a hypertrophic phenotype, characterized by increases in body and muscle weights. It has been previously shown in our laboratories that down-regulation of muscle protein breakdown associated with reduced expression of genes pertaining to different proteolytic systems likely account for this hypertrophic pattern. The aim of the present study was to evaluate the resistance of c-ski transgenic mice to catabolic stimuli such as those induced by the growth of the Lewis lung carcinoma. The tumor elicited a loss of body weight either in transgenic or in non-transgenic animals, although it was less pronounced in the former. The mass of gastrocnemius, tibialis and extensor digitorum longus (EDL) muscles were significantly reduced in non-transgenic tumor-bearing mice. Despite the anabolic setting displayed by the transgenic animals, the EDL only is completely protected against wasting. Indeed, gastrocnemius, tibialis and soleus show a reduction in weight, the latter two being significantly more depleted when compared to the non-transgenic tumor bearers. Similarly, the perigenital white adipose tissue presented a reduced mass which was more marked in the transgenic group. The quantitation of gene expression for ubiquitin, E2, C8 and calpain in the EDL showed marked differences between the transgenic and the non-transgenic groups of tumor hosts. As expected from previous results, in the latter group most of the transcripts examined increased with respect to controls as a consequence of tumor growth; by contrast, in the transgenic tumor hosts there was a significant reduction of ubiquitin, E2, C8 subunit, and calpain mRNA levels in comparison with the transgenic tumor-free animals. These results show that c-ski hyperexpression prevents tumor-induced muscle wasting in the EDL muscle, likely by impairing the state of activation of different proteolytic systems. However, the lack of effectiveness in the other muscles examined suggests that the achievement of a significant interference with the development of cachexia at the molecular level is not an easy task and probably should be designed taking into consideration more than one target.


Assuntos
Caquexia/complicações , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/complicações , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Peso Corporal/genética , Caquexia/genética , Calpaína/genética , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Tamanho do Órgão/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Ubiquitina/genética
15.
Int J Mol Med ; 13(6): 817-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15138618

RESUMO

Interleukin-15 (IL-15) administration to rats resulted in an important decrease in carcass fat (27%) and, consequently, in white adipose tissue mass. This decrease was linked with a decreased lipogenic rate (per g of tissue) in both adipose tissue (53%) and liver (36%). The decrease in hepatic lipogenesis was associated with lower hepatic citrate levels (49%) and a reduced activity of lipogenic enzymes. The results presented here further demonstrate the involvement of IL-15 in lipid metabolism. Thus, IL-15 seems to be able to modulate de novo fatty acid synthesis, possibly by influencing citrate tissue levels, an allosteric activator of the key lipogenic enzyme acetyl-CoA carboxylase.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Tecido Adiposo/metabolismo , Ácidos Graxos/biossíntese , Interleucina-15/farmacologia , Fígado/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Fígado/efeitos dos fármacos , Ratos , Ratos Wistar
16.
FASEB J ; 17(15): 2299-301, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14525942

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors exerting several functions in development and metabolism. The physiological functions of PPARdelta remain elusive. By using a CRE-Lox recombination approach, we generated an animal model for muscle-specific PPARdelta overexpression to investigate the role of PPARdelta in this tissue. Muscle-specific PPARdelta overexpression results in a profound change in fiber composition due to hyperplasia and/or shift to more oxidative fiber and, as a consequence, leads to the increase of both enzymatic activities and genes implicated in oxidative metabolism. These changes in muscle are accompanied by a reduction of body fat mass, mainly due to a large reduction of adipose cell size. Furthermore, we demonstrate that endurance exercise promotes an accumulation of PPARdelta protein in muscle of wild-type animals. Collectively, these results suggest that PPARdelta plays an important role in muscle development and adaptive response to environmental changes, such as training exercise. They strongly support the idea that activation of PPARdelta could be beneficial in prevention of metabolic disorders, such as obesity or type 2 diabetes.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Tecido Adiposo/anatomia & histologia , Animais , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Músculo Esquelético/anatomia & histologia , Oxirredução , Condicionamento Físico Animal , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética
17.
Biochim Biophys Acta ; 1570(1): 33-7, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11960686

RESUMO

Interleukin-15 (IL-15) is a proinflammatory cytokine with multifunctional effects outside the immune system. Previous studies have indicated that treatment of normal rats with IL-15 reduces white adipose tissue (WAT) mass, but it was unclear if these effects were direct or indirect. In the present study, the effects of IL-15 on WAT mass and lipid metabolism were studied in two genetic models of obesity: the leptin receptor-negative fa/fa Zucker rat and the leptin-deficient ob/ob mouse. Lean Zucker rats, lean (+/+), and obese mice (ob/ob) responded to IL-15 with reductions in WAT mass and lipoprotein lipase activity (LPL), with no decreases in food intake. In contrast, fa/fa Zucker rats did not respond to IL-15 administration by any of the above measures of fat mass or lipid metabolism. In addition, ribonuclease protection assays (RPAs) were used to demonstrate that all three subunits (gamma(c), beta and alpha) of the IL-15 receptor complex are expressed by rat and mouse WAT, suggesting that the effects of IL-15 on adipose tissue metabolism could be direct. Additionally, the fa/fa rats expressed 84% lower levels of the gamma(c) signaling receptor subunit than lean Zucker rats, suggesting this decrease may play a role in the lack of adipose tissue response to IL-15 in the fa/fa genotype and lending further support for a direct action of IL-15 on adipose tissue.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Interleucina-15/farmacologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Regulação para Baixo , Lipase Lipoproteica/análise , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Tamanho do Órgão/efeitos dos fármacos , RNA Mensageiro/análise , Ratos , Ratos Zucker , Receptores de Interleucina/análise , Receptores de Interleucina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...